Wang Weidong

QQ图片20240415102801.jpg

Ph.D. & Associate Professor                                                                                                                                                                          

College of Horticulture, Northwest A&F University,

No.3 Taicheng Road,

Yangling, Shaanxi Province, 712100, P. R. China

Email: wangweidong@nwafu.edu.cn

EDUCATION

Ph.D. in Tea Science from Nanjing Agriculture University, China, 2016

B.S. in Plant Science and Technology from Qingdao Agricultural University, 2011

PROFESSIONAL EXPERIENCE

2019.01-Present Associate Professor, College of Horticulture, Northwest A&F University

2016.06-2018.12 Lecturer, College of Horticulture, Northwest A&F University

RESEARCH INTERESTS

Physiological and molecular mechanism of stress resistance in tea plant

Molecular regulation mechanism of tea plant growth, development and quality formation

COURSES

Undergraduate courses: Tea Plant Cultivation, Tea Plant Breeding, Comprehensive Practice of Tea Science I

Graduate courses: Tea Plant Physiological Ecology, Tea Plant Breeding and Cultivation

SELECTED PUBLICATIONS

Yang HB, Jia XY, Gao T, Gong SY, Xia LX, Zhang PL, Qi YY, Liu SY*, Yu YB*, Wang WD*. The CsmiR397a-CsLAC17 module regulates lignin biosynthesis to balance the tenderness and gray blight resistance in young tea shoots. Horticulture Research, 2024, uhae085.

Bai H#, Chen JF#, Gao T, Tang ZY, Li H, Gong SY, Du Y, Yu YB, Wang WD*. A Na+/H+ antiporter localized on the Golgi-to-vacuole transport system from Camellia sinensis, CsNHX6, plays a positive role in salt tolerance. Scientia Horticulturae, 2023, 309: 111704.

Gao T, Mo YX, Huang HY, Yu JM, Wang Y, Wang WD*. Heterologous expression of Camellia sinensis late embryogenesis abundant protein gene 1 (CsLEA1) confers cold stress tolerance in Escherichia coli and Yeast, Horticultural Plant Journal, 2021, 7(1): 89-96.

Wang WD#, Gao T, Chen JF, Yang JK, Huang HY, Yu YB*. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiology and Biochemistry, 2019, 135: 277-286.

Chen JF, Gao T, Wan SQ, Zhang YH, Yang JK, Yu YB, Wang WD*. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). International Journal of Molecular Sciences, 2018, 19(9): 2633.

Guo JH, Chen JF, Yang JK, Yu YB, Yang YJ, Wang WD*. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genomics, 2018, 19: 710.

Wan SQ#, Wang WD#, Zhou TS, Zhang YH, Chen JF, Xiao B, Yang YJ*, Yu YB*. Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress. Plant Growth Regulation, 2018, 84(3): 481-492.

Wang WD#, Sheng XY, Shu ZF, Li DQ, Pan JT, Ye XL, Chang PP, Li XH and Wang YH*. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Frontiers in Plant Science, 2016, 7: 456.

Wang WD#, Xin HH, Wang ML, Ma QP, Wang L, Kaleri NA, Wang YH* and Li XH*. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Frontiers in Plant Science, 2016, 7: 385.

Wang WD#, Wang YH#, Du YL, Zhao Z, Zhu XJ, Jiang X, Shu ZF, Yin Y and Li XH*. Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco. Plant Cell Reports, 2014, 33(11): 101-108.